受教育经历:
· 2008.9-2012.6,武汉大学,电子科学与技术,学士
· 2012.9-2017.6,武汉大学,微电子学与固体电子学,直博
科研与学术工作经历:
· 2017.07-2019.07,武汉科技大学,信息科学与工程学院,博士后
· 2017-07-2020-12,武汉科技大学,信息科学与工程学院,讲师
· 2020-12-至今,武汉科技大学,信息科学与工程学院,副教授
人才计划项目:
· 湖北省“楚天学者计划”楚天学子
主持及参与项目:
1. 国家自然科学基金委员会, 面上项目, 62176192,图信号处理及其在化合物QSAR/QSPR模型学习与植物性状网络分析中的应用, 202201-202512,57万, 在研, 主持
2. 国家自然科学基金委员会, 青年项目, 61801338, 图信号的小波滤波器组设计及其在碳氢化合物QSPR研究上的应用, 2019-01至2021-12, 26万元, 在研, 主持, 已结题
3. 国家自然科学基金委员会, 青年项目, 61801339, 基于特征学习的外辐射源雷达低可观测目标检测方法研究, 2019-01至2021-12, 25万元, 在研, 参与
4. 国家自然科学基金委员会, 面上项目, 61574102, 多值逻辑应用驱动的石墨烯纳米带超晶格场效应器件原理设计, 2016-01至2019-12, 58万元, 结题, 参与
已发表文章:
[7] Xiaoying Song, Li Chai*, Graph signal smoothness based feature learning of brain functional networks in schizophrenia, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 3854-3863.
[6] Xiaoying Song, Ke Wu, Li Chai*, Brain network analysis of schizophrenia patients based on hypergraph signal processing, IEEE Transactions on Image Processing, 2023, 32: 4964-4976.
[5] Xiaoying Song, Li Chai*, Jingxin Zhang, Graph signal processing approach to QSAR/QSPR model learning of compounds, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1963-1973.
[4] Xiaoying Song, Bing Liu, Qijun Huang*, Ruihan Hu, Design of high-resolution quantization scheme with exp-Golomb code applied to compression of special images, Journal of Visual Communication and Image Representation, 2019, 56: 102648.
[3] Xiaoying Song, Qijun Huang*, Sheng Chang, Jin He, Hao Wang, Lossless medical image compression using geometry-adaptive partitioning and least square-based prediction, Medical & Biological Engineering & Computing, 2018, 56(6): 957–966.
[2] Xiaoying Song, Qijun Huang*, Sheng Chang, Jin He, Hao Wang, Three-dimensional separate descendant-based SPIHT algorithm for fast compression of high-resolution medical image sequences, IET Image Processing, 2017, 11(1): 80-87.
[1] Xiaoying Song, Qijun Huang*, Sheng Chang, Jin He, Hao Wang, Novel near-lossless compression algorithm for medical sequence images with adaptive block-based spatial prediction, Journal of Digital Imaging, 2016, 29(6): 706-715.
教学情况:
1.《信号与系统》,56学时,本科生课程
2.《机器学习及数据挖掘》,32学时,研究生课程